福田昭のデバイス通信

私たちの日常に欠かせないものになっているデバイス。それらの進化や課題など、その時々で“気になる話題”を筆者独自の視点で迫る!!

福田昭のデバイス通信(97) 高性能コンピューティングの相互接続技術(2):

1970年代から1990年代にかけて、半導体集積回路は「デナード・スケーリング」という法則に沿って高密度化と高速化を達成してきた。今回は、デナード・スケーリングの内容と、なぜ1990年代以降は、この法則に沿って微細化を進めることが困難になったのかを説明する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(96) 高性能コンピューティングの相互接続技術(1):

2016年12月に米国サンフランシスコで開催された「IEDM2016」。そのショートコースから、NVIDIAの講演を複数回にわたり紹介する。初回となる今回は、コンピュータ・システムにおいてデータのやりとりに消費されるエネルギーをなぜ最小化する必要があるのか、その理由を28nm CMOSプロセスで製造したSoCを用いて説明しよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(95):

前回に続き、5nm世代のロジック配線プロセスを展望したimecの講演を紹介する。後編となる今回は、微細化に対応して配線抵抗(R)と配線容量(C)を最適化する方法について解説する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(94):

imceによる、5nm世代のロジック配線プロセスを展望した講演を、前後編の2回にわたりお届けする。前半では、配線抵抗(R)、配線容量(C)、RC積という配線のパラメータの特徴を紹介する。さらに、10nm世代、7nm世代、5nm世代と微細化が進むと、配線抵抗(R)、配線容量(C)、RC積がどのように変化していくかを解説する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(93):

Synopsysの講演では、5nm世代のトランジスタのシミュレーション評価結果が報告された。この結果からはFinFETの限界が明確に見えてくる。5nm世代に限らず、プロセスの微細化が進むと特に深刻になってくるのが、トランジスタ性能のばらつきだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(92):

Applied Materialsの講演では、MOSFETの微細化ロードマップと、微細化の手法および課題が解説された。7nm世代のFinFETでは、フィンを狭く、高くするとともにコンタクト用の金属材料を変える必要が出てくる。FinFETの限界が見え始める5nm世代では、微細化の手法として主に2つの選択肢がある。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(91):

Samsung Semiconductorの講演では、「ムーアの法則」の現状認識から始まり、同社が考える微細化のロードマップが紹介された。Samsungは28nm世代と10nm世代が長く使われると予想している。さらに同社は、EUVリソグラフィが量産レベルに達するのは2018年で、7nm/5nm世代のチップ製造に導入されるとみている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(90):

imecは次世代のリソグラフィ技術を展望するフォーラムの講演で、半導体デバイスの微細化ロードマップを披露した。このロードマップでは、微細化の方向が3つに整理されている。シリコンデバイスの微細化、シリコン以外の材料の採用、CMOSではないデバイスの採用だ。imecは、CMOSロジックを微細化していく時の課題についても解説した。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(89):

大手レジストベンダーJSR Microの講演では、主に同社とimecの共同開発の内容が発表された。その1つが、JSR MicroのEUV(極端紫外線)レジストをimec所有のEUV露光装置で評価するというもので、化学増幅型のEUVレジストによってハーフピッチ13nmの平行直線パターンを解像できたという。さらに、5nm世代のEUVリソグラフィの目標仕様と現状も紹介された。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(88):

「SEMICON West 2016」で行われた次世代のリソグラフィ技術を展望するフォーラムから、各露光装置メーカーの講演内容を紹介してきた。今回は、半導体露光装置最大手であるASMLのEUV(極端紫外線)リソグラフィ開発状況を中心に紹介する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(87):

今回は、7nm世代以降の半導体製造プロセスで使わざるを得なくなるだろう「自己整合(セルフアライン)的なリソグラフィ技術」に触れる。その候補は3つ。東京エレクトロンのBen Rathsack氏が、3つの候補技術の現状を紹介した。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(86):

90nm世代から商業化が始まったArF液浸スキャナーだが、3xnm世代に入ると、解像力は限界に達する。そこで、コスト増というデメリットは伴うものの、マルチパターニングによって解像力の向上が図られてきた。加えて、7nm世代向けのArF液浸スキャナーでは新しいリソグラフィ技術の導入も必要だとされている。この場合、コスト面ではダブルパターニングと電子ビーム直接描画の組み合わせが有利なようだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(85):

KrFスキャナーの次に登場したのがArFスキャナーである。ArFスキャナーは90nm世代の量産から使われ始めた。さらに、ArFスキャナーの製品化と並行して「ポストArF」の開発が活発化する。ポストArFとして、F2エキシマレーザーあるいは軟X線を光源とする露光技術の開発が進んだが、そこに、もう1つの候補として急浮上したのがArF「液浸」スキャナーである。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(84):

今回は、半導体露光技術の歴史の完結編(その1)をお届けする。1996年ごろに本格的に導入され始めたKrFステッパーだが、既に2つの課題が浮上していた。光学系の開口数(N.A.)の向上の限界と、シリコンダイが大きくなり過ぎていたことだ。これらを解決する手段として登場したのが「スキャナー」である。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(83):

今回はステッパー(縮小投影分割露光装置)の進化の歴史をたどる。1980〜1990年代半ばにかけて、g線ステッパーでは光学系の開口数(N.A.)が順調に向上し、i線ステッパーへと移行していく。その後、1996〜1997年になると、量産に使えるKrFレーザーステッパーが登場する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(82):

今回は、等倍一括露光から縮小分割露光への転換の歴史を紹介する。縮小分割露光は、光露光技術の画期的なブレークスルーであった。そしてこの技術は、ニコンが半導体露光装置メーカーの大手へと成長するきっかけにもなった。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(81):

今回から、リソグラフィ技術のセッションの概要を紹介する。まずは、半導体露光技術の進化について解説したい。前半では主に、「コンタクト露光」から始まる等倍露光技術の発展の流れを見てみよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(80):

前回に続き、半導体産業の市場について解説する。半導体製造装置の市場規模は3年前の2013年に比べて増加しているが、地域別にみると中国の台頭が目立つ。また、同市場の成長要因についても触れる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(79):

米国で開催された「SEMICON West 2016」の記者説明会から、SEMIによる半導体の市場動向を紹介する。前編となる今回は、半導体デバイスと半導体製造装置の市場動向について説明する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(78):

半導体製造関連の北米最大の展示会「SEMICON West 2016」が現在、カリフォルニア州サンフランシスコで開催中だ。今回のテーマは「これまでのビジネスは忘れろ」。そこから見えてくるのは、半導体産業が明らかに転換期に入ったということだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(16):

ARM Researchの講演内容を紹介してきたシリーズ。完結編となる今回は、ARMが「スーパーメモリ」と呼ぶ“理想的なメモリ”の仕様を紹介したい。現時点で、このスーパーメモリに最も近いメモリは、どれなのだろうか。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(15):

ここ数回にわたり「SRAMについて知っておくべきこと」を紹介している。今回は、SRAMの書き込み動作について説明していこう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(14):

今回は、SRAMの消費電力と設計課題について解説する。SRAMの低消費電力化に効果的なのは電源電圧を下げることだが、これには、書き込み不良と読み出しディスターブ不良という問題が付きまとう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(13):

今回からはSRAMについて知っておくべきことを紹介していく。まずは、多くの半導体メモリにも共通するSRAMシリコンダイの基本レイアウトから説明していこう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(12):

今回は、HBM(High Bandwidth Memory)とDDR4 DRAMを、データ転送速度やパッケージングなどの点から比較してみる。後半は、埋め込みDRAM(eDRAM)の説明に入る。ARM ReserchのRob Aitken氏は、eDRAMが「ニッチな市場にとどまる」と予想しているが、それはなぜだろうか。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(10):

今回は、DRAMで知っておくべき4つの事実を紹介する。「DRAMの事業規模は巨大であること」「DRAMの性能は常に不足していること」「DRAM開発は傾斜が急になり続ける坂道を登っているようなものであること」「3次元技術はDRAM開発にとって援軍ではあるが救世主ではないこと」の4つだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(9):

今回は、仮想メモリの仕組みを詳しく解説していこう。仮想メモリの概要と、これを採用したシステムについて見てみたい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(8):

今回は、メモリアクセスの高速化手法である「投機的プリフェッチ(Speculative Prefetch)」の仕組みを解説する。これは、“次のアクション”を推測して、データをキャッシュにコピーするものだ。この他、キャッシュが抱える本質的な弱点についても触れておきたい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(7):

今回は、キャッシュメモリの基本動作について解説する。基本動作は、大きく分けて2つある。メインメモリからデータをキャッシュラインにコピーする「アロケーション」と、特定のキャッシュラインからデータを追い出して“空き”を作る「エビクション」だ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(6):

今回は、キャッシュメモリについて解説する。キャッシュの考え方はとてもシンプルだが、実装となるとさまざまな方法があって複雑だ。今回は、3つのキャッシュアクセス構造について説明しよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(5):

今回から、CPUアーキテクチャとメモリ・システムの関連について掘り下げていこう。まずは5段パイプラインアークテクチャを例に挙げ、メモリ・システムとの関連をみていく。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(4):

今回は、NANDフラッシュメモリ登場後のメモリ・アーキテクチャを見ていきながら、「CPUのメモリに対する要求」を考えていく。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(3):

今回からは、「CPUのメモリに対する要求」について紹介していく。まずは、CPUのアーキテクチャがどのように変ってきたかを振り返りつつ、CPUのメモリに対する要求の変遷を見ていこう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(2):

システム設計において、CPUコアはもはやそれほど重要ではない。大切なのは、メモリ、相互接続(配線)、消費電力、ソフトウェアである。ディスプレイを例に挙げ、最適なシステム・アーキテクチャの構築について説明しよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ARMが語る、最先端メモリに対する期待(1):

今回から、2015年12月に開催された「IEDM2015」でARM Researchが講演した、メモリ技術の解説をお届けしよう。まずは、システム設計が抱える課題から紹介していきたい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(61):

前編に続き、IntelとMicron Technologyの次世代不揮発性メモリ「3D XPoint」について解説しよう。今回は、「オボニック・スレッショルド・スイッチ(OTS:Ovonic Threshold Switch)」と、材料について詳しく見ていきたい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(60):

米国で開催された「ISS(Industry Strategy Symposium)」において、IntelとMicron Technologyが共同開発した次世代メモリ技術「3D XPoint」の要素技術の一部が明らかになった。カルコゲナイド材料と「Ovonyx」のスイッチを使用しているというのである。この2つについては、長い研究開発の歴史がある。前後編の2回に分けて、これらの要素技術について解説しよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(10):

10回にわたりお届けしてきた「ISSCC 2016」プレビュー。最終回となる今回は、セッション27と28のおすすめ講演を紹介する。セッション28の主要テーマは医療エレクトロニクスだ。バッテリーで動作し、持ち運びが可能な生体信号計測システムなどが発表される。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(9):

今回はセッション24〜26を紹介する。「ワイヤレス通信」がテーマとなっているセッション24では、IoE(Internet of Everything)向けの低消費電力無線チップの発表が相次ぐ。ソニーとソニーLSIデザインが開発した、消費電力が1.5mW〜2.3mWと低いGNSS(全地球航法衛星システム)受信器などが発表される。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(7):

今回はセッション19〜21までを紹介する。セッション20では、パナソニックが発表する、300GHz帯で32値のQAM信号を出力する送信器チップに注目したい。チャンネル当たりのデータ送信速度は17.5Gビット/秒で、6チャンネルの5GHz帯域出力を備えている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(6):

セッション17とセッション18のテーマはメモリだ。セッション17では、Samsung Electronicsが、10nmのFinFETを用いた高密度SRAMの開発成果を披露する。メモリセルの面積が0.04μm2と、過去最小のSRAMセルを実現している。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(5):

セッション15では、Analog Devices(ADI)が発表する、入力帯域幅が465MHzと極めて広いΔ-Σ方式のA/D変換器などに注目したい。2016年2月1日と2日の夜に行われる、パネル討論会も興味深い。「無線回路を20nm未満に微細化する必要はあるのか」や、「2000年代の回路設計で最も素晴らしい瞬間」などが討論のテーマだ。パネリストたちの熱い本音トークが聞けることを期待したい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(4):

今回はセッション12〜14を紹介しよう。セッション14では「次世代のプロセッシング」というテーマに沿って、ディープラーニング専用コアを搭載したプロセッサや、運転者の意図を予測する機能を備えたADAS(先進運転支援システム)向けSoCなど、人工知能プロセッサの発表が相次ぐ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(3):

セッション7のテーマは「不揮発性メモリのソリューション」だ。マイクロンジャパンとMicron Technology、Intelの共同チームが、768Gビットと極めて大きな記憶容量のNANDフラッシュメモリを発表するなど、注目の論文が相次ぐ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(2):

今回は、セッション4〜6のハイライトを紹介する。セッション4では、MediaTekが、ARMv8AアーキテクチャのCPUコアを10個内蔵するモバイル・プロセッサを披露する。動作周波数の違いによってCPUコアを3つのクラスタ(トライクラスタ)に分けているものだ。ルネサス エレクトロニクスは、フルHDのビデオ処理を12チャンネル実行する車載情報機器向けSoCを発表する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 ISSCC 2016プレビュー(1):

今回から、2016年1月から2月にかけて米国で開催される半導体関連の国際学会「ISSCC(IEEE International Solid-State Circuits Conference)」を紹介していく。基調講演は、ムーアの法則や5G携帯電話、自動車通信などがテーマになっている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(13):

13回にわたりお届けしてきたIEDM 2015のプレビューは、今回が最終回となる。本稿ではセッション32〜35を紹介する。折り曲げられるトランジスタや、電子のスピンを利用した論理回路、疾患を素早く検知する人工知能ナノアレイ技術などに関連する研究成果が発表される。

【福田昭 , EE Times】()
福田昭のデバイス通信 IEDM 2015プレビュー(12):

カンファレンス3日目に行われるセッション30では、オリンパスが、可視光と赤外光を同時に別々の画像として撮像するマルチバンド・イメージセンサーについて講演する。セッション31では、シリコン基板上にIII-V族化合物デバイスを作成する、次世代の電子デバイスや光デバイスについての発表が相次いで行われる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(11):

今回はセッション27〜29を紹介する。セッション29では、生体組織分析デバイスや生体モニタリングデバイスに関する講演が行われる。Columbia Universityらの研究グループは、有機材料の発光ダイオードおよび光検出器を組み合わせた、脳血流量モニタリングシステムを発表する。同システムの厚みは、わずか5μmしかない。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(10):

今回から、カンファレンス最終日のセッションを紹介する。セッション26は、「MRAM、DRAMとSRAM」をテーマに講演が進んでいく。MRAMについては計4件の論文発表があり、例えばQualcomm Technologiesらは、40nmルールのCMOSロジックに埋め込むことを想定したSTT-MRAM技術を報告する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(9):

2015年12月8日に開催されるセッション22のテーマは「スティープスロープ・トランジスタ」だ。このトランジスタの実現手法に関する研究成果がIntelなどから発表される。同日夜のパネルディスカッションでは、オンチップの相互接続技術や、CMOS技術が直面している課題について議論が行われる予定だ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(8):

カンファレンス2日目に予定されているセッション19〜21の内容を紹介しよう。セッション19では、折り曲げ可能なX線イメージング技術や、折り曲げ可能なNANDフラッシュメモリなど、さまざまなフレキシブルエレクトロニクス技術に関する講演が行われる。折り曲げ可能なNANDフラッシュメモリは、韓国の研究チームが発表するもので、30万回折り曲げた後でも、安定した電気接続を維持したという。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(7):

今回はセッション16〜18の講演を紹介する。セッション17では、不揮発性メモリを利用したニューロモルフィックシステム(脳神経系を模倣した低消費電力システム)の講演が相次いだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(6):

今回はセッション13〜15の概要を取り上げたい。セッション15では、「モア・ムーア(More Moore)」と「モアザン・ムーア(More Than Moore)」の両方に関する研究成果が発表される。「モアザン」については、フランスの研究チームが折り曲げ可能なCMOS回路を紹介する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(5):

今回のプレビューでは、セッション10〜12の内容を紹介する。セッション11では、ルネサス エレクトロニクスやSamsung ElectronicsがSRAM関連の技術を発表する。セッション12では、第3の2Dデバイス材料として注目を集める黒リン関連の発表に注目したい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(4):

今回のプレビューでは、セッション7〜9を紹介する。セッション7では抵抗変化メモリ(ReRAM)の信頼性に関する発表が相次ぐ。セッション8では、3次元集積回路の製造技術がテーマだ。セッション9では、富士通と東京工業大学が試作した、96GHzの周波数で出力が3W/mmと高いInAlGaN/GaN HEMTなどが発表される。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(3):

今回はセッション4〜6の講演を紹介する。セッション4では、人間の脳をモデルにした計算アーキテクチャなどが焦点となる。セッション5では3D NAND型フラッシュメモリ関連の発表が行われ、セッション6ではIGZO材料による20nmノードの高周波FETなどが発表される予定だ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(2):

今回は、「IEDM 2015」で開催される予定のセッションから、セッション2と3を紹介する。セッション2では、IV族元素でレーザーを試作した研究成果や、GeのナノワイヤでCMOS回路を試作した研究成果が発表される。セッション3では、主にメモリ技術がテーマとなる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信 IEDM 2015プレビュー(1):

今回からは、2015年12月に米国ワシントンD.C.で開催される、最先端電子デバイスの国際学会「IEDM 2015」のプレビューを紹介する。実は、ワシントンD.C.で開催されるIEDMは、今回が最後になる。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(12):

今回は、ナノインプリント・リソグラフィ技術の開発ロードマップを紹介しよう。キヤノンは現在、インプリント装置の第1世代機の開発を終えたところで、今後5年間で第2および第3世代機の開発に取り組んでいく予定だ。インプリント装置のターゲットは、NAND型フラッシュメモリとDRAM、ロジックICである。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(11):

今回は、露光の際にシリコン・ウエハー周辺部で発生する現象「パーシャルフィールド」をもう少し掘り下げて解説しよう。このパーシャルフィールドについてキヤノンは、3種類に分けて対処しているという。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(10):

ナノインプリント・リソグラフィでは、ウエハー1枚当たりの処理時間を短縮しようとすると、欠陥密度が増加する傾向にある。だが要求されるのは、生産性の向上と欠陥密度の低減だ。キヤノンは、こうした“二律背反”の要求に応えるべく、リソグラフィ技術の改良を重ねてきた。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(9):

今回は、ナノインプリント・リソグラフィを構成する要素技術の開発状況をお伝えする。ここ1年でとりわけ大きく進歩しているのが、重ね合わせ誤差と生産性(スループット)だ。重ね合わせ誤差は半分〜3分の1に低減し、スループットは2倍〜3倍に向上しているという。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(7):

今回は、ASMLのEUV(極端紫外線)露光装置の開発ロードマップを紹介する。次期主力機「NXE:3350B」は、16nmの解像を目標に開発が進んでいるという。「NXE:33x0」シリーズとしては、2016年には光源出力を250W、生産性を1500枚/日に向上させるなど、強気な目標を立てている。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(6):

今回は、EUV(極端紫外線)露光装置の開発の歴史を振り返ってみたい。ASMLが顧客向けに初めてEUV露光装置を出荷したのは2006年のことである。その後の約10年で、光源の出力やスループットはどのくらい向上しているのだろうか。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(5):

本稿では、EUVリソグラフィ開発の進ちょくをお伝えする。ASMLの開発用露光装置「NXE:3300B」は、1日当たりのウエハー処理枚数が1000枚を超え、以前に比べるとかなり進化した。また、7nm世代のロジック配線を解像できるようになっている。

【福田昭 , EE Times Japan】()
SEMICON West 2015リポート(4):

今回は、コストとパターン形成の2点について、ArF液浸とEUV(極端紫外線)リソグラフィを比べてみよう。ArF液浸では、10nm世代になるとステップ数と重ね合わせ回数が破壊的な数値に達してしまう。これがコストの大幅な上昇を招く。さらに、ArF液浸とEUVでは、10nm世代の配線パターンにも大きな差が出てくる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(36):

本シリーズは、次々世代のMOSFETで非シリコン材料がチャンネル材料の候補になっていることを説明してきた。最終回は、本シリーズのまとめであるCMOSデバイスの実現手法と試作例を紹介する。従来と同様のCMOSデバイスを非シリコン材料で実現する手法は2つある。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(35):

前回は、ゲルマニウム(Ge)をチャンネル材料とするMOSFETの研究開発の歴史と現状を紹介した。今回はもう1つの材料であるインジウム・ガリウム・ヒ素(InGaAs)である。InGaAsの歴史と背景にあるIII-V族化合物半導体とともに、研究開発の状況を解説する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(34):

前回は、シリコン(Si)を代替する半導体材料の候補を紹介した。今回はゲルマニウム(Ge)をチャンネル材料とするMOSFETの研究開発の歴史と現状を紹介する。歴史上、初めてのトランジスタの材料はシリコンではなく、ゲルマニウムだった。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(33):

今回からは、非シリコン材料を使ったMOSFET開発に焦点を当てる。微細化技術が行き詰まりを見せている中、非シリコンへの注目が高まっている。それはなぜなのか。また、非シリコン材料の候補には何があるのだろうか。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(32):

無線センサーネットワークは、IoT(モノのインターネット)を支える基盤技術の1つだ。“IoT向け”という点を考慮すると、無線センサー端末の「完全体」というのは、外部からの充電が不要で、設置箇所に半永久的に放置できるものになるだろう。その「完全体」に近い端末を、米国のミシガン大学が試作している。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(31):

シリーズ最終回となる今回は、これまでの内容をまとめてみよう。トランジスタの将来像から、消費電力と性能のバランスの取り方、微細化(スケーリング)の余地の拡大まで、ひと通り振り返る。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(30):

微細化が限界を迎えた時に回路密度を向上する手法として、シリコンダイや回路層を積層する3次元技術がある。今回は、これらの手法を紹介していこう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(29):

プロセスルールの微細化において最も困難な課題は、リソグラフィ技術にある。7nm世代の半導体を量産するためのリソグラフィ技術は、いまだに確定していない。現在のところ、解決策としては、従来のArF液浸リソグラフィ技術の改善か、EUV(極端紫外光)リソグラフィ技術の開発が挙げられている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(28):

今回は、金属配線の微細化に伴う課題を取り上げる。信号の周波数当たりの配線長や、エレクトロマイグレーションといった問題があるが、これらを根本的に解決する策として期待がかかるのが、配線材料の変更や印刷エレクトロニクスの実用化である。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(27):

今回はSRAMの消費電力に視点を移す。CPUの電源電圧の低下に伴うSRAMビット不良や、待機時と動作時で大きく異なるSRAMの消費電力に焦点を当て、なぜ、次世代の不揮発性メモリ「スーパーメモリ」に期待がかかっているのかを説明しよう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(26):

今回は、SRAMの微細化について触れる。16/14nm世代までは微細化が順調に進んできたが、数多くの課題が存在する。周辺回路を縮小しにくいことが、その1つとして挙げられる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(25):

今回は、トランジスタ密度をFinFETに比べて、より高められる素子の構造について触れる。代表的なものが、円筒状のチャンネルをウエハー表面と平行に配置する「ホリゾンタルナノワイヤ(HNW)」と、垂直に配置する「バーチカルナノワイヤ(VNW)」である。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(24):

FinFETの“延命策”として、チャンネルの材料をシリコンからゲルマニウム(Ge)やインジウム・ガリウム・ヒ素(InGaAs)などに変更する方法がある。だが、ARMの講演では、この“延命策”に悲観的だった。今回は、Ge FETなどが抱える問題と、その打開策について紹介する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(23):

今回は、トランジスタ構造の展望を、2つの軸に沿って見ていこう。1つ目はプレーナFETからFinFETへの移行、2つ目は14nm世代から5nm世代にかけてのトランジスタ仕様である。FinFETの登場は、プレーナFETにはなかった新たな課題をもたらしている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(22):

今回は、回路の遅延時間を左右する要因について紹介する。例えば、コンタクト抵抗、しきい電圧、電源電圧、温度などがある。しきい電圧と温度、電源電圧と温度が遅延時間に与える影響はかなり複雑だが、その対処法として、DVFS(Dynamic Voltage and Frequency Scaling)技術が挙げられる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(21):

回路の動作周波数などを左右する大きな要因は「PVT」、つまりプロセス(P)、電源電圧(V)、温度(接合温度T)である。動作周波数の代表値や最高値、最低値は、PVTコーナーの数によって決まる。この数は、微細化とともに急増する傾向にあり、タイミング解析がより難しくなっている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(20):

今回は、LSI設計作業の所要時間について解説する。設計の各工程ではイタレーション、つまり「手戻り」と呼ばれる修正作業が発生する。CPUの動作周波数を上げるためには、膨大な数の手戻りが行われている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(19):

今回は、携帯機器などの用途に求められる消費電力の点から、CPUの性能を見てみよう。まず覚えておきたいのは、ゲート長ごとに性能と消費電力のトレードオフが存在するということだ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(18):

今回は、CPUコアの性能(動作周波数)とレイアウト設計の関係を見ていこう。CPUコアの性能は、レイアウト設計によって大きく変わる。CPUコアの性能とシリコン面積、消費電力は独立ではない。回路が同じでも、シリコン面積が2倍違うということもある。逆に、回路を工夫すれば、トランジスタ数を減らしてシリコン面積を削減することも可能だ。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(17):

今回は、回路がどのようにレイアウトされていくのかを見てみよう。回路図が同じでも、実際にシリコンのスタンダードセルとして具現化すると、レイアウトがだいぶ異なる場合もある。ARMの講演では、コンパレータを例に取って説明していた。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(16):

「スタンダードセル方式」の「スタンダード」とは、セルの高さと横幅が標準化されていることを指す。今回は、スタンダードセル方式で、高さの異なるセルを特性に応じて使い分ける方法と、同じ高さのセルで電流駆動能力を高める方法を紹介する。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(15):

今回は、ロジック設計の変遷をたどっていこう。現在の主流である「スタンダード方式」の他、FPGAに代表される「セミカスタム」などがある。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(14):

今回から、ARMの講演の本論に入る。論理設計から、シリコンダイに落とし込むまでに焦点を当てる。LSI設計で最も重要なのは、論理合成と配置、配線である。これらの設計品質が、“シリコンダイ”の良しあしを決める。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(13):

前回、設計技術者とデバイス技術者の間には距離があることを説明した。CPUの設計者がデバイス技術者にする質問は常に同じだが、それに対するデバイス技術者の答えにはズレがあるのだ。今回は、そのズレについて説明したい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(12):

ARMにとって「IEDM」は非常に重要だ。この会議で議論されるトランジスタ技術が同社のCPUアーキテクチャの行方を左右するからである。ARMは「IEDM 2014」で、CPU設計とデバイス・プロセス技術の関わりを解説する講義を行った。今回から、その内容を複数回にわたってお届けする。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(11):

「デブコン大阪」の展示リポートの最後は、「オフィス」「ファクトリー」関連の技術を紹介する。オフィスの照明に可視光通信機能を組み込み、オフィス内の人間の位置情報を把握するシステムや、産業用イーサネットでモーターをリアルタイムに制御する技術などが展示された。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(10):

今回は、ルネサス エレクトロニクスが最も得意とする分野、モーター制御関連の展示を紹介する。単相誘導モーターを簡単にインバータ制御に変更する技術をアピールした他、ステッピング・モーター(STPM)を永久磁石同期モーター(PMSM)に置き換えるシステムなどを展示していた。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(9):

「Renesas DevCon JAPAN in Osaka」では、「ホーム(家庭)」に関する展示として、ヘルスケア通信規格「Continua(コンティニュア)」に準拠したシステムや、ペットや家族の健康状態をモニタリングするサービスなどが紹介された。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(8):

今回は、都市で応用できる技術を紹介する。建物の内部劣化をインピーダンスから検知する技術や、±6°という大きなブレを調整するカメラ用の手ブレ補正技術だ。手ブレ補正は、民生機器向けではなく、インフラ向けというのがルネサスらしい。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(7):

今回は、開発環境に関するソリューションを紹介する。複数の開発環境を用意しなくてもマルチコア・マイコンのデバッグが行える統合開発環境や、「RL78」マイコンのプログラムをGUIベースで自動生成するツールなどが展示された。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(6):

稼働期間が十数年におよぶようなシステムの場合、保守部品の調達は常に大きな懸念点となる。最近は、供給期間をWebサイトなどで明示する半導体メーカーが増えてきた。ルネサス エレクトロニクスは、こうした取り組みを積極的に進めている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(5):

今回は、ハイエンド品である「RZファミリ」に焦点を当てる。RZファミリの特徴としてまず挙げられるのは、ARMの「Cortex」シリーズをCPUコアとして採用している点だろう。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(4):

前回に続き、ルネサス エレクトロニクスの最新のマイコン群を紹介する。今回は、ミッドレンジの「RXファミリ」に焦点を当てる。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(3):

ルネサス エレクトロニクスが2015年1月29日に開催した顧客向けイベント「Renesas DevCon JAPAN in Osaka」の内容を取り上げながら、同社の最新半導体ソリューションを順次、紹介していく。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(2):

「ポストシリコン」の研究は、「半導体デバイスの性能を向上させるべく、非シリコン材料を使う研究」とも捉えることができる。SiC、GaNは、パワー半導体と発光デバイスでは既に採用が進んでいて、SiGeもCMOSロジック回路に導入されている。

【福田昭 , EE Times Japan】()
福田昭のデバイス通信(1):

私たちの日常に欠かせないものになっているシリコン半導体。シリコン半導体は、常に“文明の利器”の進化を支え続けてきたといっても過言ではないだろう。その地位は、今後も揺るがないはずだ。

【福田昭 , EE Times Japan】()
MONOist×JOBS

大手メーカー求人・人気ランキング

研究開発<自動運転の研究>

機構設計<車載用・蓄電用リチウムイオン電池モジュール>

制御システム開発<エンジン/モータ・燃料電池/車両/車載電装システム>

クボタ New!

機械設計<農機/建機/エンジン>

京セラ New!

電気回路設計<車載用カメラモジュール>

RSSフィード

All material on this site Copyright © 2005 - 2017 ITmedia Inc. All rights reserved.
This site contains articles under license from UBM Electronics, a division of United Business Media LLC.